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Abstract

The paper investigates models expressed by equations with higher-grade spatial derivatives which are devised for describing transport phenomena 
in nanosystems. Particular attention is addressed to the Guyer-Krumhansl equation as a prototype of equations with higher-grade terms. First the 
thermodynamic consistency of the equation is investigated and conclusions are found for appropriate properties of the coefficients. Next a rather new 
approach is developed in that evolution equations are not given from the outset but are determined by applying a representation formula that makes 
the consequences of the second law directly operative. In this approach the free energy, the entropy flux, and the entropy production are considered as 
constitutive functions that eventually generate the desired evolution equation. Some equations derived in this way prove to be highly non-linear. The 
approach though leads also to simple models such as the one expressedby the well-known Maxwell-Cattaneo equation.
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Introduction

In nanoscale systems the heat carrier mean free path may result 
comparable with the geometric dimensions. While equilibrium 
properties are well established within statistical mechanics [1], the 
order of dimensions explains why the literature shows a deep attention 
to heat transport equations of non-local character at the macroscopic 
level (see, e.g. [2-4]). Among the approaches involved in the derivation 
of macroscopic equations it is worth mentioning the recourse to 
the Boltzmann equation [5], phonon hydrodynamics models [6] or 
arguments within non-equilibrium thermodynamics [7]. The thermal 
properties of crystals at low temperatures is often modelled by the 
Guyer-Krumhansl equations for heat conduction [8]. For definiteness, 
in the uncoupled harmonic limit the equation for the heat flux reads

 		 (1)

where the superposed dot is the time derivative and ∇ is the 
gradient operator. Within continuum physics, eq. (1) can be viewed as 
a rate equation for q where q̇ depends linearly on q itself, a source field r 
and the second-grade gradients ∇∇q. Owing to the derivation within 
the kinetic theory and the associated approximations, it is natural to 
inquire about the thermodynamic consistency within continuum 
physics. Further, we may look for generalizations suggested by the 
continuum context. For instance, we may view λ, ν, ζ as constants 
but even more generally as temperature dependent parameters.
Thermodynamically the analysis of (1) is of interest within the so 
called rational thermodynamics [9] also because so far investigations 
have been mainly performed through other approaches (see, e.g., [10]). 
Further, we observe that, in general, the thermodynamic restrictions 
involve inner products and leave the transverse (orthogonal) parts of 

vectors or tensors fully undetermined. The application of an appropriate 
representation formula allows us to look for the general structure of 
thermodynamically-consistent constitutive equations.This paper has a 
twofold purpose. First, to examine the validity of the thermodynamic 
consistency of rate equations like (1) with temperature dependent 
coefficients. Secondly, to apply the representation formula for the rate 
q˙ so that a generalization is given of eq.(1) and higher-grade terms, 
compatible with thermodynamics, are determined.

Representation Formula

The body under consideration occupies the region  in the three-
dimensional space. Given an origin O, with any point of the body is 
associated a vector position x. We denote by  the gradient 
operator. For any vector, say f , we define the norm |f | by |f | = (f · f )1/2 
. The symbol Skw denotes the set of skew-symmetric tensors.

Let w, f be two vectors. Letting  we have

If w is subject to

w · f = g                                                         (2)

then

 

If the transverse part w⊥ is undetermined then we can represent 
it in the form
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where u is an arbitrary vector. Hence, in view of (2) we can 
represent w in the form

                              

A number of applications of this representation formula, and of 
the analogous one for tensors, are developed in refs [11,12].

Thermodynamic Consistency of the Rate Equation

Let  be the internal energy density, per unit mass, and  
the mass density. The assumption that the body is rigid makes a 
constant. The balance of energy can be written in the form

                     
where q is the heat flux, r is the energy supply, and the superposed dot 
denotes the time derivative.

Let  be the absolute temperature and  the entropy density. The 
balance of entropy is expressed by

                      

 where k is the extra-entropy flux and  is the entropy production. 
Substitution of from the balance of energy (4) and using the 
free energy

 

result in

Based on eq. (1) we let

                              

be the set of variables. We then assume , k,  , q̇ are continuous 
functions of  and   continuously differentiable. Indeed we first let 
q˙ be given by (1) and allow λ, ν, ζ  depend on the temperature . 
Compute  and substitute in (5) to obtain

To avoid lengthy calculations we observe that replacing q˙ through 
(1) leads to

  

as far as the dependence on  and  is concerned. The 
arbitrariness and symmetry of  and  imply 
, in that

and the like for . Though not necessary we put

 

Thus it follows . Moreover the arbitrariness of and 
 implies

.

Hence eq. (6) simplifies to

              

which is a restriction on the functions  and λ, ν, ζ For 
definiteness we let

Consequently we have

Notice that

Thus we can write (7) in the form

Inequality (8) is satisfied if

           (9)                 
and  is constant. Hence , which is consistent with 
the condition   Incidentally, in stationary and uniform 
conditions , eq. (1) reduces to the Fourier form

                                                      

In light of the results (9) we infer

 

thus showing that the heat conductivity  is required to be 
positive. In addition, the entropy production is

It is worth noticing that

and then

                                   

Since  is the specific heat, we guarantee the condition 
by letting 

In summary, we have considered the rate equation for q, as given 
from the outset in the form (1), and have determined conditions 
for the thermodynamic admissibility. Instead, we now start with the 
Clausius-Duhem inequality (5) and look for possibly more general 
thermodynamically-consistent rate equations for q.

Generalized Rate Equations

Rate equations are now derived by appealing to the Clausius-
Duhem inequality (5) and the representation formula (3). We continue 
to let  be the set of variables and assume Hence eq. (6) 
reads



Nanotechnol Adv Mater Sci, Volume 6(3): 3–4, 2023	

Angelo Morro (2023) On the Modelling of Heat Conduction in Crystals via Higher-grade Terms

Since , k, and  are independent of  then the arbitrariness of 
 implies again the classical relation

For definiteness we keep assuming

Hence it follows that

              

We then apply the representation formula (3) with the 
identifications

   

Hence the general representation of q˙ is

                       

where u is an arbitrary vector-valued function of 

Models with k = 0

If k = 0 then (11) simplifies to

If also u = 0 then we can write

In one-dimensional settings (x-direction) we have

More interestingly, let Equation (12) becomes

The particular case results in

that is the Maxwell-Cattaneo equation [13,14] with relaxation 
time and heat conductivity 

Models with 

First we let u = 0 and observe that, by (11), in a non-linear 
form.

By analogy with eq. (1) we assume

                   

where  is the second-order tensor with components 
. Hence eq. (11) can be written in the form

Notice that

where the prime 0 means differentiation with respect to temperature. 
Hence we obtain

 

If, rather, we let  be constants then  results in the 
addition of a term proportional to but also a term , 
in the expression of q˙ . This shows the qualitative role of u in the 
formulation of constitutive equations. As an aside, observe that the 
flux k is given in [15]; here the whole value of k is established 
by (9) subject to the constancy of 

Conclusions

Models of nanosystems within continuum physics are often 
established by using highergrade spatial derivatives so as to account 
for the mean free path of particles comparable with the geometric 
dimensions. This paper addresses attention to the Guyer-Krumhansl 
equation (1) as a prototype of equations with higher-grade terms. 
Owing to the kinetic derivation of (1) it is natural to contrast the 
equation with the basic requirements of continuum physics. Here this 
is performed in relation to the thermodynamic consistency namely 
the compatibility with the second law via the Clausius-Duhem 
inequality. Definite conclusions are shown to follow if attention is 
confined to appropriate coefficients constant along with the 
requirements (9)).

Next a rather new approach is developed in that evolution 
equations are determined by applying a representation formula that 
makes the consequences of the second law directly operative. In 
this approach we consider the free energy, the entropy flux, and the 
entropy production as constitutive functions that eventually generate 
the desired evolution equation. Some equations derived in this way 
prove to be highly non-linear.

It seems then that this way is profitable in establishing involved 
higher-grade equations within continuum physics. The approach 
though leads also to simple models such as the one expressed by the 
well-known Maxwell-Cattaneo equation.

Acknowledgments

The research leading to this work has been developed under the 
auspices of INDAM-GNFM.

References
1.	 Kittel C (1956) Introduction to Solid State Physics, Wiley.

2.	 Zhu CY, You W, Li ZY (2017) Nonlocal effects and slip heat flow in nanolayers. Sci 
Reports 7: 9568.

3.	 Dong Y, Cao BY, Guo ZY (2011) Generalized heat conduction laws based on 
thermomass theory and phonon hydrodynamics. J App Phys 110: 063504 (2011).

4.	 Hennessy MG, Myers TG (2020) Guyer-Krumhansl heat conduction in 
thermoreflectance experiments, in Multidisciplinary Mathematical Modelling. 
Applications of Mathematics to the Real World, F. Font and T.G. Myers eds. 
Springer.



Nanotechnol Adv Mater Sci, Volume 6(3): 4–4, 2023	

Angelo Morro (2023) On the Modelling of Heat Conduction in Crystals via Higher-grade Terms

5.	  Xu M, Li X (2012) The modeling of nanoscale heat conduction by Boltzmann 
transport equation. Int J Heat Mass Transf 55: 1905-1910.

6.	 Alvarez FX, Jou D, Sellitto A (2009) Phonon hydrodynamics and phonon-boundary 
scattering in nanosystems. J Appl Phys 105: 014317.

7.	 Lebon G (2014) Heat conduction at micro and nanoscales: a review through the prism 
of Extended Irreversible Thermodynamics. J Non-Equilib Thermodyn 39: 36-59.

8.	 Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann 
equation. Phys Rev 148: 766-778.

9.	 Truesdell C (1969) Rational Thermodynamics, A Course of Lectures on Selected 
Topics, McGraw-Hill, New York.

10.	 Sellitto A, Cimmelli VA, Jou D (2016) Mesoscopic Theories of Heat Transport in 
Nanosystems. Springer, New York.

11.	 Morro A, Giorgi C (2023) Mathematical Modelling of Continuum Physics, 
Birchk¨auser, Cham.

12.	 Morro A, Giorgi C (2023) Techniques for the thermodynamic consistency of 
constitutive equations. Thermo 3: 260-276.

13.	 Straughan B (2011) Heat Waves, Springer, Berlin.

14.	 Joseph DD, L. Preziosi L (1989) Heat Waves. Rev Mod Phys 61: 41-73

15.	 Cimmelli VA, Jou D, Ruggeri T, V´an P (2014) Entropy principle and recent results in 
non-equilibrium theories. Entropy 16: 1756-1807.

Citation:

Morro A (2023) On the Modelling of Heat Conduction in Crystals via Higher-grade Terms. Nanotechnol Adv Mater Sci Volume 6(3): 1-4.


